Ric Price and colleagues report a systematic review of hepatitis A infections as possibly foodborne until 28 days of the date of symptom onset. According to Sprenger, the recent foodborne outbreaks of hepatitis A in Europe raise the question whether the member states should consider options for even broader vaccination recommendations against hepatitis A.9 However, the ultimate aim should be food product safety—ie, to secure the absence of hepatitis A virus from food. Viral contamination of food can occur anywhere in the production process, but most foodborne viral infections can be traced back to infected people who handled food that is not heated or otherwise treated afterwards.10 Experimental studies have shown that the virus can be transferred from contaminated hands to food and surfaces.11

Appropriate and regular hand hygiene practices are the mostly effective measure to prevent transmission of hepatitis A virus. Ensuring adequate hygiene in the countries producing the food will be a major challenge in the endeavor to prevent foodborne hepatitis A. In the meantime, physicians and public health officers should consider hepatitis A infections as possibly foodborne until proven otherwise. Routine collection and preservation of serum and stool samples from all patients with hepatitis A within 28 days of the date of symptom onset would improve detection and control outbreaks. In this way, the treating physician can have a paramount role in disease prevention in high-income countries.

Jürgen J Wenzel, *Franz Allerberger
Institute of Clinical Microbiology and Hygiene, Regensburg University Medical Center, Regensburg, Germany (JJW), Department of Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria (FA)
franz.allerberger@ages.at

We declare no competing interests.

Antimalarial resistance: is vivax left behind?

Despite the necessary and major goal of containment of artemisinin resistance in Plasmodium falciparum,1–4 not all malaria is caused by P falciparum and outside of Africa the greatest malaria burden is attributable to Plasmodium vivax.1 In The Lancet Infectious Diseases, Ric Price and colleagues5 report a systematic review of the resistance of P vivax to chloroquine, examining published studies from 1960 to 2014. They conclude that chloroquine-resistant P vivax is now present across most of vivax-endemic regions. In addition to containing their high-quality analysis, their Article proposes a set of methods to explore resistance to antimalarial drugs in vivax malaria and highlights a surprising scarcity of data and methods available to work on P vivax.
Many national control programmes are quite insensitive to concerns about vivax elimination in the face of the threat of falciparum. However, vivax, and the threat of resistance in that organism, needs to be considered in its own right. The \(P \) vivax lifecycle has important differences to that of \(P \) falciparum, which are expected to slow down the development of resistance to chloroquine.\(^6\) The parasite stays as latent forms (hypnozoites) in the liver, from which regular relapses can occur. Treatment with chloroquine alone cannot prevent relapses and hence the interest in hypnozoiticidal drugs such as primaquine. Vivax can produce gametocytes (stages that are infectious to mosquitoes) rapidly after emergence from the liver and invasion of the blood. This contrasts with falciparum, which not only does not have latent liver stages, but also takes a minimum of 10 days to generate infectious gametocytes in the blood.\(^7\) Both these lifecycle differences should expose vivax parasites to less selection pressure from drug treatment. However, vivax parasites might have been exposed to sublethal concentrations of chloroquine after treatment for falciparum malaria during coinfection; treatment of falciparum cases in Thailand was often followed by a clinical case of vivax malaria.\(^8\) Now that chloroquine is no longer the first-line drug for treating falciparum malaria, this collateral effect will be alleviated. Thus, the probability of the spread of resistance is expected to be lower for vivax than for falciparum. Lower but not null, and this risk must be taken into account when considering vivax national treatment policies.

Obstacles specific to addressing of \(P \) vivax chloroquine resistance need to be overcome: it is very difficult to do standardised in-vitro culture (and therefore have a reproducible phenotype of drug sensitivity); it is impossible to distinguish between relapse and recrudescence; we have little information on the population genetic structure of \(P \) vivax (gene flow, selfing rate, etc); and so far no molecular marker of resistance has been proposed for large epidemiological studies. The absence of molecular markers is, of course, a major obstacle for use in the assessment of the spread of resistance and, thus, optimisation of therapeutic strategies. A key step for the identification of a molecular marker is development of a clear-cut phenotype of resistance. Price and colleagues propose parasite clearance time as a proxy to study antimalarial resistance. Indeed, accurate characterisation of this clearance time would enable differentiation of clinical resistance from relapse.\(^9\)

There has been much conjecture on whether \(P \) vivax and \(P \) falciparum affect one another and thus whether targeting one species might lead to the emergence of the other.\(^10\)\(^11\) Focus is now on the fight against \(P \) falciparum, which seems to have had little effect on the vivax burden.\(^1\) For public health care, vivax malaria must be considered as a disease distinct from falciparum malaria,\(^12\)\(^13\) and will benefit from a dedicated control programme strategy. Malaria elimination will not be able to ignore vivax, which should no longer be the least of our worries.

*Frédéric Ariey, Richard E Paul
Genetics and Genomics of Insect Vectors Unit (FA) and Functional Genetics of Infectious Diseases Unit (REP), Institut Pasteur, Paris 75724, France
frederic.ariey@pasteur.fr
We declare no competing interests.

Copyright © Ariey et al. Open Access article distributed under the terms of CC BY.